196 research outputs found

    Emergent Properties of Tumor Microenvironment in a Real-life Model of Multicell Tumor Spheroids

    Get PDF
    Multicellular tumor spheroids are an important {\it in vitro} model of the pre-vascular phase of solid tumors, for sizes well below the diagnostic limit: therefore a biophysical model of spheroids has the ability to shed light on the internal workings and organization of tumors at a critical phase of their development. To this end, we have developed a computer program that integrates the behavior of individual cells and their interactions with other cells and the surrounding environment. It is based on a quantitative description of metabolism, growth, proliferation and death of single tumor cells, and on equations that model biochemical and mechanical cell-cell and cell-environment interactions. The program reproduces existing experimental data on spheroids, and yields unique views of their microenvironment. Simulations show complex internal flows and motions of nutrients, metabolites and cells, that are otherwise unobservable with current experimental techniques, and give novel clues on tumor development and strong hints for future therapies.Comment: 20 pages, 10 figures. Accepted for publication in PLOS One. The published version contains links to a supplementary text and three video file

    Study of the chemotactic response of multicellular spheroids in a microfluidic device

    Get PDF
    YesWe report the first application of a microfluidic device to observe chemotactic migration in multicellular spheroids. A microfluidic device was designed comprising a central microchamber and two lateral channels through which reagents can be introduced. Multicellular spheroids were embedded in collagen and introduced to the microchamber. A gradient of fetal bovine serum (FBS) was established across the central chamber by addition of growth media containing serum into one of the lateral channels. We observe that spheroids of oral squamous carcinoma cells OSC–19 invade collectively in the direction of the gradient of FBS. This invasion is more directional and aggressive than that observed for individual cells in the same experimental setup. In contrast to spheroids of OSC–19, U87-MG multicellular spheroids migrate as individual cells. A study of the exposure of spheroids to the chemoattractant shows that the rate of diffusion into the spheroid is slow and thus, the chemoattractant wave engulfs the spheroid before diffusing through it.This work has been supported by National Research Program of Spain (DPI2011-28262-c04-01) and by the project "MICROANGIOTHECAN" (CIBERBBN, IMIBIC and SEOM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Lactate Dehydrogenase-B Is Silenced by Promoter Methylation in a High Frequency of Human Breast Cancers

    Get PDF
    Objective: Under normoxia, non-malignant cells rely on oxidative phosphorylation for their ATP production, whereas cancer cells rely on Glycolysis; a phenomenon known as the Warburg effect. We aimed to elucidate the mechanisms contributing to the Warburg effect in human breast cancer. Experimental design: Lactate Dehydrogenase (LDH) isoenzymes were profiled using zymography. LDH-B subunit expression was assessed by reverse transcription PCR in cells, and by Immunohistochemistry in breast tissues. LDH-B promoter methylation was assessed by sequencing bisulfite modified DNA. Results: Absent or decreased expression of LDH isoenzymes 1-4, were seen in T-47D and MCF7 cells. Absence of LDH-B mRNA was seen in T-47D cells, and its expression was restored following treatment with the demethylating agent 5'Azacytadine. LDH-B promoter methylation was identified in T-47D and MCF7 cells, and in 25/ 25 cases of breast cancer tissues, but not in 5/ 5 cases of normal breast tissues. Absent immuno-expression of LDH-B protein (<10% cells stained), was seen in 23/ 26 (88%) breast cancer cases, and in 4/8 cases of adjacent ductal carcinoma in situ lesions. Exposure of breast cancer cells to hypoxia (1% O2), for 48 hours resulted in significant increases in lactate levels in both MCF7 (14.0 fold, p = 0.002), and T-47D cells (2.9 fold, p = 0.009), but not in MDA-MB-436 (-0.9 fold, p = 0.229), or MCF10AT (1.2 fold, p = 0.09) cells. Conclusions: Loss of LDH-B expression is an early and frequent event in human breast cancer occurring due to promoter methylation, and is likely to contribute to an enhanced glycolysis of cancer cells under hypoxia

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Polymersome-Mediated Delivery of Combination Anticancer Therapy to Head and Neck Cancer Cells: 2D and 3D in Vitro Evaluation

    Get PDF
    Polymersomes have the potential to encapsulate and deliver chemotherapeutic drugs into tumor cells, reducing off-target toxicity that often compromises anticancer treatment. Here, we assess the ability of the pH-sensitive poly 2-(methacryloyloxy)ethyl phosphorylcholine (PMPC)- poly 2-(diisopropylamino)ethyl methacrylate (PDPA) polymersomes to encapsulate chemotherapeutic agents for effective combinational anticancer therapy. Polymersome uptake and ability to deliver encapsulated drugs into healthy normal oral cells and oral head and neck squamous cell carcinoma (HNSCC) cells was measured in two and three-dimensional culture systems. PMPC-PDPA polymersomes were more rapidly internalized by HNSCC cells compared to normal oral cells. Polymersome cellular uptake was found to be mediated by class B scavenger receptors. We also observed that these receptors are more highly expressed by cancer cells compared to normal oral cells, enabling polymersome-mediated targeting. Doxorubicin and paclitaxel were encapsulated into pH-sensitive PMPC-PDPA polymersomes with high efficiencies either in isolation or as a dual-load for both singular and combinational delivery. In monolayer culture, only a short exposure to drug-loaded polymersomes was required to elicit a strong cytotoxic effect. When delivered to three-dimensional tumor models, PMPC-PDPA polymersomes were able to penetrate deep into the center of the spheroid resulting in extensive cell damage when loaded with both singular and dual-loaded chemotherapeutics. PMPC-PDPA polymersomes offer a novel system for the effective delivery of chemotherapeutics for the treatment of HNSCC. Moreover, the preferential internalization of PMPC polymersomes by exploiting elevated scavenger receptor expression on cancer cells opens up the opportunity to target polymersomes to tumors

    Reprogramming energy metabolism and inducing angiogenesis : co-expression of monocarboxylate transporters with VEGF family members in cervical adenocarcinomas

    Get PDF
    Background: Deregulation of cellular energetic metabolism was recently pointed out as a hallmark of cancer cells. This deregulation involves a metabolic reprogramming that leads to a high production of lactate. Lactate efflux, besides contributing for the glycolytic flux, also acts in the extracellular matrix, contributing for cancer malignancy, by, among other effects, induction of angiogenesis. However, studies on the interplay between cancer metabolism and angiogenesis are scarce. Therefore, the aim of the present study was to evaluate the metabolic and vascular molecular profiles of cervical adenocarcinomas, their co-expression, and their relation to the clinical and pathological behavior. Methods: The immunohistochemical expression of metabolism-related proteins (MCT1, MCT4, CD147, GLUT1 and CAIX) as well as VEGF family members (VEGF-A, VEGF-C, VEGF-D, VEGFR-1, VEGFR-2 and VEGFR-3) was assessed in a series of 232 cervical adenocarcinomas. The co-expression among proteins was assessed and the expression profiles were associated with patients’ clinicopathological parameters. Results: Among the metabolism-related proteins, MCT4 and CAIX were the most frequently expressed in cervical adenocarcinomas while CD147 was the less frequently expressed protein. Overall, VEGF family members showed a strong and extended expression with VEGF-C and VEGFR-2 as the most frequently expressed and VEGFR-1 as the less expressed member. Co-expression of MCT isoforms with VEGF family members was demonstrated. Finally, MCT4 was associated with parametrial invasion and HPV18 infection, CD147 and GLUT1 with distant metastasis, CAIX with tumor size and HPV18 infection, and VEGFR-1 with local and lymphnode metastasis. Conclusions: The results herein presented provide additional evidence for a crosstalk between deregulating cellular energetics and inducing angiogenesis. Also, the metabolic remodeling and angiogenic switch are relevant to cancer progression and aggressiveness in adenocarcinomas.CP received a post-doctoral fellowship (SFRH/BPD/69479/2010) and FM-S received a doctoral fellowship (SFRH/BD/87139/2012) from FCT (Portuguese Foundation for Science and Technology). This work was supported by the FCT grant ref. PTDC/SAU-FCF/104347/2008, under the scope of "Programa Operacional Tematico Factores de Competitividade" (COMPETE) of "Quadro Comunitario de Apoio III" and co-financed by Fundo Comunitario Europeu FEDER, and also by FAPESP 2008/03232-1

    Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling.

    Get PDF
    Neutrophils provide first line of host defense against bacterial infections utilizing glycolysis for their effector functions. How glycolysis and its major byproduct lactate are triggered in bone marrow (BM) neutrophils and their contribution to neutrophil mobilization in acute inflammation is not clear. Here we report that bacterial lipopolysaccharides (LPS) or Salmonella Typhimurium triggers lactate release by increasing glycolysis, NADPH-oxidase-mediated reactive oxygen species and HIF-1α levels in BM neutrophils. Increased release of BM lactate preferentially promotes neutrophil mobilization by reducing endothelial VE-Cadherin expression, increasing BM vascular permeability via endothelial lactate-receptor GPR81 signaling. GPR81-/- mice mobilize reduced levels of neutrophils in response to LPS, unless rescued by VE-Cadherin disrupting antibodies. Lactate administration also induces release of the BM neutrophil mobilizers G-CSF, CXCL1 and CXCL2, indicating that this metabolite drives neutrophil mobilization via multiple pathways. Our study reveals a metabolic crosstalk between lactate-producing neutrophils and BM endothelium, which controls neutrophil mobilization under bacterial infection
    • 

    corecore